
  

 

 

Diagnosis of DC Bias in Power Transformers with Vibration test Method 

Hao Cao*, 1, Sheng Hu1, Xiaozhong Wu2, Zhiqiang Xu2 
1Hunan Electric Power Corporation Research Institute State Grid Changsha, China 

2Hunan Electric Power Corporation State Grid Changsha, China 
*Corresponding author: caoh16@hn.sgcc.com.cn 

Keywords: Power transformer; DC bias; feature extraction; pattern recognition 

Abstract: This paper deals with a vibration test method to diagnose DC bias in power transformers. 
Vibration variation process of a 500kV autotransformer is tested under the influence of DC bias. 
Transformer vibrations in normal and DC-biased conditions are compared. Three features are 
proposed and is validated by sensitivity analysis. The Principal Component Analysis method is 
employed for feature de-correlation and dimensionality reduction. The least square support vector 
machine algorithm is used and verified successful in DC bias recognition. The suggested diagnostic 
method could be useful in targeted DC bias control and improving the safe operation level of power 
transformers  

1. Introduction 
Substantial efforts have been devoted to diagnosis anomalous operation state in power transformers 

[1]. When the HVDC transmission system operates in monopole earth return mode, direct current will 
flow through the AC power transformer with grounded neutral, which causes DC bias problem [2]. 
DC bias will induce high-order harmonics in the magnetization current. Consequently, local 
overheating, anomalous noise and vibration are generated in the power transformers [3-4].  

The vibration of transformer oil tank is caused by that of core and windings after a complex 
transmission process. Thus, the operation condition of transformer core and windings can be observed 
through vibration detection on the oil tank surface [5]-[8]. According to field test results, vibration of 
transformer oil tank increases simultaneously with increasing direct current flowing into the neutral. 
Compared with the electric method, vibration test method is much more efficient and has not electrical 
connection with power transformer. Therefore, it can be employed as an alternative method to detect 
DC bias in power transformer.  

In this paper, a vibration feature extraction and pattern recognition method is proposed for assessing 
the DC bias condition of power transformers. Field vibration test of a 500kV autotransformer is carried 
out. A few vibration features are defined and the extraction and recognition method are introduced.  
The proposed method is verified by field test data. 

2. Field Vibration Tests 
The frequency band of transformer vibration is commonly in the 50Hz-2 kHz range. To detect the 

vibration in this range, the accelerometer B&K 4534 is used, which is a sensor with the frequency 
response range of 0.2Hz-12.8 kHz. Its sensitivity and scope are 100mV/g and ±70g, respectively. The 
signals from the sensors are input to B&K 3053 data acquisition module for multi-channel 
synchronous sampling. The sampling frequency is 32768 Hz. Location determination of the 
measurement point is always a practical issue encountered in the vibration test of power transformers. 
As the vibration on the oil tank surface is the composite result of the core and winding vibrations, 
picking up more information of both the core and winding is essential for effective vibration 
measurement. In addition, stiffeners on the outer surface increase the structure nonlinearity of the tank, 
leading to spectral and amplitude variation of the vibration signal. Thus, choosing the measurement 
positions is influential to the vibration test result. These positions should be sensitive to the vibrations 
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of the core and windings. At these positions, the vibration signals have little attenuation and the spectra 
are not obviously influenced by the structure of the oil tank. According to the previous research 
achievement, three accelerometers are installed on the plane area roughly one-fourth of the transformer 
oil tank with magnetic seats [5]. Locations of the vibration measurement points on a 500kV 
autotransformer are shown in Fig. 1. These measurement points are uniformly distributed on the oil 
tank. 

 
Fig 1. Locations of the vibration measurement points. 

The transformer vibration in normal operation condition without DC bias is measured. As 
transformer vibration is in stable state approximately, the vibration could be viewed as periodic signal 
in seconds. Fast Fourier transform is conducted to obtain the frequency spectrum. The vibration 
waveform and spectrum distribution of the measurement point 2 on the oil tank of the transformer 
without DC bias are given Fig. 2. In normal condition, the vibration acceleration amplitude of the 
measurement point 2 is about 2.2 m/s2. The majority of the frequency components are in the range of 
1 kHz. The dominant frequency of the transformer vibration is 200 Hz with the amplitude about 
0.6m/s2. The main frequency components are 100 Hz, 200 Hz, 400 Hz, and 700 Hz. 

Compared with the waveform and spectrum distribution without DC bias, great changes have been 
observed to that of transformer vibration with DC bias, as shown in Fig. 3. The direct current flowing 
into the transformer is 10.6A. The amplitude of vibration acceleration rises up to 37.2 m/s2, which is 
approximately 17 times the value in normal condition. On the other hand, much more high-order 
harmonics of 50 Hz present in the frequency spectrum. The range of frequency components increased 
from 1 kHz to 2 kHz. Many frequency components at odd times of 50 Hz are generated, such as 250 
Hz, 350 Hz, 450 Hz, and 650 Hz. Moreover, the dominant frequency component becomes 700 Hz and 
the amplitudes of the frequency components over 1 kHz increase in a large degree. At some 
components like 100 Hz, 200 Hz, and 400 Hz, the vibration energy proportion decreases dramatically. 
It is found that DC bias has great impact on transformer vibration characteristics. 

 
Fig 2. Transformer vibration spectrum without DC bias. 
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Fig 3. Transformer vibration spectrum with DC bias. 

3. Feature Extraction 
Vibration features should be sensitive to the DC bias status of power transformers. As sudden 

variation commonly does not occurs to transformer vibration, the time-domain features such as 
vibration amplitude or its envelope are not considered in this paper. The frequency-domain features 
based on FFT analysis and wavelet packet decomposition are proposed to detect DC bias. In order to 
make the measured results representative, frequency spectra of the three vibration measurement points 
are averaged. 

3.1 Feature Definitions 
3.1.1. Odd-to-Even Harmonic Ratio 

The feature odd-to-even harmonic ratio is defined by 

                              (1) 

where N=40 is the vibration harmonic number of 50 Hz in the frequency range of 2 kHz,  and 
 are the vibration amplitudes of the even and odd harmonics of 50Hz, respectively. 

3.1.2. Spectral Complexity 
The feature spectral complexity is defined by the following formula: 

                                 (2) 

                                  (3) 

Where  is the ith harmonic amplitude,  is the energy ratio of the ith harmonic. 

3.1.3. Wavelet Packet Energy Distribution 
A wavelet packet function can be defined as 

                              (4) 

Where n is the modulation parameter, l is the scale level, k is the localization parameter. 
The wavelet packet functions can be defined with the following sequence of recursive functions. 

                            (5) 
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                            (6) 

Where  and  are respectively the low-pass and high-pass finite impulse filters. 
The first two wavelet packet functions can be defined by a scale function and a mother wavelet 

function, i.e. 

                              (7) 

For l levels of decomposition, WPD of vibration signal f(x) produces 2l different sets of coefficients. 

                               (8) 

Each WPD sub-band signal corresponding to can be reconstructed with 

                                (9) 

The vibration signal of power transformer can be expressed as 

                                (10) 

WPD sub-band energy is calculated by 

                           (11) 

Hence, the total energy of vibration signal f(x) is 

                                (12) 

Finally, the feature of wavelet packet energy distribution can be written as the vector 

                            (13) 

3.2 Principal Component Analysis 
The parameters Roe, H, and T comprise the vibration features of power transformers in DC bias 

condition. In order to reduce the dimensionality of vibration features, the principal component analysis 
(PCA) method is employed. Assuming  are the new chosen vibration features of DC 
bias obtained by linear combination of the original features , the relation between 
original and new features can be expressed as 

                     (14) 

                                   (15) 

Where  is coefficient of nth original feature constitutes the mth Principal component,  is 
the normalized coefficient matrix of the mth Principal component, A is the feature transformation 
matrix, x is the original feature matrix. 

The information content of each Principal component can be represented by its variance. Generally, 
minor features are chosen to characterize DC bias in the vibration feature extraction process for 
dimension reduction. The cumulative variance proportion r can be calculated by 
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                                (17) 

Where the variance of is ,  is the covariance matrix. 

4. Pattern Recognition 
Recently, support vector machine (SVM) based algorithms have been used as a powerful tool to 

solve the classification problems. The SVM is a machine learning algorithm. It tries to find out a hyper-
plane to separate the data points according to their classes with the maximum distance. In that case, 
the hyper-plane is called the optimal hyper-plane. The least square SVM (LS-SVM) algorithm is a 
simplified version of SVM, which maintains the advantages and the attributes of the original SVM 
theory. It possesses excellent generalization performance and is associated with low computational 
costs. Compared with SVM, it requires less effort in model training. Attribute to these advantages, the 
LS-SVM algorithm is chosen to recognize the vibration features of DC-biased power transformers. 
The following is a brief account on the theory of LS-SVM. 

Given the training data set {xk, yk} (k=1, 2… M) With input samples xk, binary class labels yk 
{-1, 1} and sample number M, the SVM formulations starts from the assumption that 

                               (18) 

The classification hyper-plane is 

                               (19) 

Where  is the normal vector of the hyper-plane, b is the bias term,  is the nonlinear 
function mapping input data into a higher dimensional feature space. 

According to structural risk minimization, the solution of  and b can be equivalent to the 
following minimization problem 

                         (20) 

                             (21) 

                     (22) 

Where the error is variable,  is the Lagrange multiplier,  is the regularization parameter. 
According to Karush-Kuhn-Tucker condition, the solution of above problem concludes in a 

constrained optimization with the conditions:  

                          (23) 

After application of the Mercer condition, the LS-SVM classifier results into the following equation: 

                            (24) 
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Where the radial basis is function kernel,  is the kernel parameter. 
For the training problem of LS-SVM, performance of the LS-SVM algorithm is influenced by the 

regularization parameter and the kernel parameter. The grid search and cross validation approaches 
could be used to get the optimal parameters. 

5. Feature Sensitivity Analysis 
In order to verify the effectiveness of the vibration features to the change of DC bias condition, the 

time variation process of odd-to-even harmonic ratio and spectral complexity and the discrepancy of 
wavelet packet energy distribution have been analyzed.  

Figure 4 gives the time variation process of the feature Roe and the vibration acceleration. In the 
first 30 min, DC bias is nearly absent. The transformer vibration amplitude a stays in a low level and 
increases gradually from 1.5 m/s2 to 1.6 m/s2, which variation is not obvious. However, an apparent 
increase can be observed in the curve of the feature Roe from 0.16 to 0.30. In the next 10 min, sharp 
increase of both the feature Roe and the vibration acceleration present. The feature Roe and the vibration 
amplitude rise up to 0.77 and 11.56 m/s2, respectively. After 40 min, both the feature Roe and the 
vibration amplitude fluctuate in a high level. During the whole process, the variation of the feature Roe 
can always keep in accordance with that of the vibration amplitude. It seems more sensitive than the 
vibration acceleration even when the direct current flowing in the neutral of power transformer is in 
small amplitude. 

 
Fig 4. Feature Roe variation process with time. 

Figure 5 shows the time variation process of the feature H and the vibration acceleration. Like the 
feature Roe, the feature H has similar variation curve with the amplitude of vibration acceleration. 
Obvious increase is also found in the first 30 min from 2.25 to 2.44. When DC bias occurs, the feature 
H rises up to 2.94. Compared with vibration acceleration, higher degree of fluctuation can be observed 
from the curve of the feature H, which means that the proposed feature is more sensitive to the DC 
bias status of power transformers. 

The wavelet packet energy distribution before and after DC bias is shown in Fig. 6. The db4 wavelet 
and Shannon entropy are used in the 4-level wavelet packet decomposition. In order to scatter the 
wavelet packet energy distribution and make it more uniformly distributed in the whole frequency 
band, the vibration signal is re-sampled from the frequency of 32768 Hz to 4096 Hz. Based on the 
theory of wavelet packet (WP), the upper limit of the vibration frequency band is 2048 Hz after 
resample. The vibration energy is mainly distributed in the sub-bands of 1 to 8 after WPD, which is in 
the frequency range of 1024 Hz. Before DC bias occurs, the dominant vibration energy is in the 
frequency range of 0~128 Hz and 256~384 Hz. When DC bias occurs, the dominant vibration energy 

2 2( , ) exp{ || /(2 )}k kΨ σ= − −x x || x x
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presents in the frequency range of 256~384 Hz. The vibration energies in the sub-bands of 3 to 8 
increase greatly compared with that of power transformers in normal operation condition. Therefore, 
the wavelet packet energy distribution can be used as the vibration feature to detect DC bias. 

 
Fig 5. Feature H variation process with time. 

 
Fig 6. Feature T variation before and after DC bias. 

6. Application and Analysis 
6.1 Principal Features Calculation 

In the trial operation process of the ±800kV Jiuquan-Hunan HVDC power transmission system with 
monopole earth return mode, vibration of the 500kV autotransformer is tested. The vibration signal in 
each 10 s is treated as a sample. Rough vibration features of each sample are calculated. The PCA 
method is used to extract the Principal features of DC bias. 

There are totally 126 vibration samples used to train the classifier of LS-SVM, including 108 sets 
of DC bias samples classified with label “1” and 18 sets of normal samples classified with label “-1”. 
These DC bias samples are obtained when the HVDC system is operated in the transmitting power of 
600, 2000, and 2100 MW, respectively. In each operation condition, 36 sets of vibration data are 
selected.  

Eigenvalue of the covariance matrix of the original rough features are calculated and sorted. Then, 
the cumulative variance proportion of each Principal feature is obtained. 

                          (26) [0.6961 0.9790 1.0000]r = 
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It is observed that the cumulative variance proportion of the first two Principal components reaches 
97.9%. Thus, the information contained in the first two Principal components is deemed enough to 
represent that of all the rough features. These two Principal features are extracted as the vibration 
features of DC-biased power transformers. After PCA, the consequent Principal features are plotted in 
Fig. 7. 

 
Fig 7. Principal vibration features of DC-biased power transformers. 

6.2 Recognition results 
Another 36 sets of samples are used to test the effectiveness of the LS-SVM classifier in which 18 

normal vibration samples and 18 DC-biased vibration samples are included. The rough features are 
calculated and transformed to the two-dimensional Principal features with the matrix A. As shown in 
Fig. 8, all the samples are correctly predicted, which verifies the proposed LS-SVM method in pattern 
recognition of DC bias. 

 
Fig 8. Recognition result of the LS-SVM classifier. 

181



  

 

 

7. Conclusion 
In this paper, the field vibration test of a 500 kV autotransformer is conducted under the influence 

of DC bias in the monopole trail operation stage of the ±800kV Jiuquan-Hunan HVDC power 
transmission project. From the test result, it is proved that the vibration test method is effective to 
detect DC bias in power transformers. The time-domain waveform and frequency-domain spectrum 
comparisons between normal and DC-biased vibrations of a power transformer are performed. In 
addition to vibration amplitude, it is revealed that DC bias changes the frequency spectrum distribution 
in frequency component and its energy proportion. Three features including odd-to-even harmonic 
ratio, spectral complexity, and wavelet packet energy distribution are proposed. By the sensitive 
analysis, these features are proved effective to diagnose DC bias. The PCA method is employed to de-
correlate these features. The LS-SVM algorithm is proposed to classify and recognize the extracted 
features. The proposed algorithm is verified effective in DC bias diagnosis of power transformers. It 
could be used to diagnose DC bias in power transformers. 
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